Bienvenidos a Ciencia en Canoa, una iniciativa creada por
Vanessa Restrepo Schild.

domingo, 14 de septiembre de 2014

Colombia: Minsalud ya firmó el decreto sobre medicamentos biotecnológicos

Si el Presidente lo suscribe, contenido de la controvertida norma se daría a conocer este miércoles.

Foto: Archivo / el tiempo

Biotecnológicos son aquellos que resultan de la manipulación de organismos vivos (células, bacterias y tejidos).

El ministro de Salud, Alejandro Gaviria, le aseguró a EL TIEMPO que el decreto de regulación de medicamentos biotecnológicos ya tiene su firma y está a la espera de la del presidente Juan Manuel Santos para ser expedido. Si supera este requisito, el contenido de la controvertida norma se daría a conocer este miércoles. (Lea también: Estados Unidos, preocupado por biotecnológicos, camiones y etanol)

El texto es fruto de varios años de debate y cinco borradores que han sido debatidos ampliamente por las partes interesadas; pese a eso, las multinacionales farmacéuticas siguen inconformes con algunos puntos, fundamentalmente con la llamada ‘ruta abreviada’.

Para entenderlo hay que decir que los biotecnológicos son aquellos que resultan de la manipulación de organismos vivos (células, bacterias y tejidos), mediante tecnologías muy avanzadas, y que se usan para tratar enfermedades como cáncer, artritis y otros males degenerativos. (Lea también: Proponen que bloqueo a genéricos sea delito de lesa humanidad).

Se trata de fármacos innovadores y costosos, cuyo mercado durante el primer semestre del 2014 representó el 20 por ciento del gasto farmacéutico nacional, aun cuando solo representan el 1 por ciento de todos los registros de fármacos vigentes en Colombia.

Quienes los crean aseguran que por sus características (derivados de organismos vivos) es imposible obtener medicamentos exactamente iguales, razón por la cual no podrían copiarse, sino obtener, a lo sumo, biosimilares.

Al no ser idénticos a los de la referencia, los biosimilares deben demostrar, con estudios clínicos comparativos, que tienen perfiles parecidos –en eficacia, potencia y seguridad– a los innovadores. Y esos no son procedimientos sencillos.

Para todos los biotecnológicos, el Ministerio de Salud propone en el decreto tres vías de registro: 
  • la del innovador, que debe presentar evidencia clínica completa sobre sus beneficios, eficacia y seguridad; 
  • la de los medicamentos altamente parecidos al fármaco de la referencia, cuyos fabricantes deben probar su biosimilitud, y 
  • la ‘ruta abreviada’.
Esta ruta permite caracterizar moléculas al punto que se puede decir si una es similar a la otra mediante un proceso técnico, sin tener que hacer estudios clínicos en humanos. Se parte del hecho de que la molécula ya está estudiada.

Las multinacionales son contrarias a esta vía, porque consideran que por ella pueden colarse fármacos que no ofrecen la misma eficacia y seguridad. En el extremo opuesto están quienes aseguran que este argumento solo busca mantener el monopolio sobre los biotecnológicos y los precios altos.

Las dudas sobre la ‘ruta abreviada’ o ‘tercera vía’, y otros aspectos del decreto, fueron resaltadas por la Administración de Medicamentos y Alimentos de Estados Unidos (FDA), en una carta al Ministerio de Salud a la cual respondió Alejandro Gaviria, con otra misiva, dirigida a Margaret A. Hamburg, comisionada de la FDA.

En ella, el Ministro aclara las dudas de la agencia reguladora de ese país y acepta hacer algunos ajustes. No obstante, hace énfasis en que la ‘ruta abreviada’ responde a procesos que se ajustan al rigor técnico científico –de manera que evitan cualquier riesgo para la población– y en que, en términos generales, el decreto coincide con las perspectivas que sobre el tema tiene la propia FDA.

ORIGINAL: El Tiempo
Por: SALUD
14 de septiembre de 2014

viernes, 12 de septiembre de 2014

Scientists find mysterious species that defy all classifications of life


Marine biologists from the University of Copenhagen have discovered two new species that "defy all existing classifications of life." They are rather cute and pretty—like some monsters from a Mario Bros. game.

Found in the sea southeast of Australia, the research paper published in PLOS ONE describes two asymmetrical mushroom shaped beings found at a depth of 400 to 1000 meters:

A new genus, Dendrogramma, with two new species of 
  • multicellular, 
  • non-bilaterian, 
  • mesogleal 
  • animals with 
  • some bilateral aspects, 
D. enigmatica and D. discoides, are described from the south-east Australian bathyal (400 and 1000 metres depth). A new family, Dendrogrammatidae, is established forDendrogramma.


The enigmatic beings have scientists puzzled because they don't fit in the current classification of life. The paper's abstract says that their relation to other species is a "question still under debate," so they have left their classification as incertae sedis. The scientists who made the discovery say that new specimens should be recover to make molecular analysis to find the relation with other existing species—if any.

The other question still under debate is this: Can I eat them, perhaps deep fried with a light batter?

ORIGINAL: Sploid
By Jesus Diaz
Sept 10, 2014

Danko Nikolic on Singularity 1 on 1: Practopoiesis Tells Us Machine Learning Is Not Enough!


If there’s ever been a case when I just wanted to jump on a plane and go interview someone in person, not because they are famous but because they have created a totally unique and arguably seminal theory, it has to be Danko Nikolic. I believe Danko’s theory of Practopoiesis is that good and he should and probably eventually would become known around the world for it. Unfortunately, however, I don’t have a budget of thousands of dollars per interview which will allow me to pay for my audio and video team to travel to Germany and produce the quality that Nikolic deserves. So, I’ve had to settle with Skype. And Skype refused to cooperate on that day even though both me and Danko have pretty much the fastest internet connections money can buy. Luckily, despite the poor video quality, our audio was very good and I would urge that if there’s ever been an interview where you ought to disregard the video quality and focus on the content – it has to be this one.

During our 67 min conversation with Danko we cover a variety of interesting topics such as:

As always you can listen to or download the audio file above or scroll down and watch the video interview in full.

To show your support you can write a review on iTunes or make a donation.


Who is Danko Nikolic?


The main motive for my studies is the explanatory gap between the brain and the mind. My interest is in how the physical world of neuronal activity produces the mental world of perception and cognition. I am associated with

  • the Max-Planck Institute for Brain Research
  • Ernst Strüngmann Institute
  • Frankfurt Institute for Advanced Studies, and
  • the University of Zagreb.

I approach the problem of explanatory gap from both sides, bottom-up and top-down. The bottom-up approach investigates brain physiology. The top-down approach investigates the behavior and experiences. Each of the two approaches led me to develop a theory: The work on physiology resulted in the theory of practopoiesis. The work on behavior and experiences led to the phenomenon of ideasthesia.

The empirical work in the background of those theories involved

  • simultaneous recordings of activity of 100+ neurons in the visual cortex (extracellular recordings), 
  • behavioral and imaging studies in visual cognition (attention, working memory, long-term memory), and 
  • empirical investigations of phenomenal experiences (synesthesia).
The ultimate goal of my studies is twofold.

  • First, I would like to achieve conceptual understanding of how the dynamics of physical processes creates the mental ones. I believe that the work on practopoiesis presents an important step in this direction and that it will help us eventually address the hard problem of consciousness and the mind-body problem in general. 
  • Second, I would like to use this theoretical knowledge to create artificial systems that are biologically-like intelligent and adaptive. This would have implications for our technology.

A reason why one would be interested in studying the brain in the first place is described here: Why brain?


This Drivable Car Was Just 3D Printed In 44 Hours



At the International Manufacturing Technology Show in Chicago, Local Motors 3D printed a plastic car called the Strati in front of thousands of attendees.

Local Motors took the chassis, seats, door panels, and thousands of other components, and 3D printed all those parts into just one piece. The first phase of the process, completed on Tuesday, took just 44 hours. 

"A 3D printed car like ours will only have dozens of components," Local Motors engineer James Earle tells Business Insider. In the near future, he says, it could cost only about $7,000 to manufacture, perhaps the start of what will become a niche market for customized cars.

"You can make a vehicle for yourself that's basically a one-0ff, do the entire design," he says. "You could create custom-fit seats that conform to your shape, things like that, that you couldn't do with cars now."



ORIGINAL: Business Insider
By Will Wei.
SEP. 10, 2014

jueves, 11 de septiembre de 2014

Datos científicos cambian el papel de los desarrolladores


Anant Jhingran no es fan del término ‘científico de datos’. 

Actualmente es el vicepresidente de productos de la empresa especializada en gestión de API Apigee y anteriormente se desempeñó como vicepresidente y director de tecnología de Información de Gestión en IBM, donde desarrolló el sistema Watson, un sistema de computación cognitiva que acompañó a las supercomputadoras IBM.

Durante los últimos años he estado practicando lo que realmente significa el permitir una gran escuela de los desarrolladores, crear aplicaciones mejores y más inteligentes”, dice Jhingran.

Me he dado cuenta que el científico que trabaja con datos, tiene que pasar de ser el nerd a convertirse en quien resuelve los problemas muy difíciles; es decir de ser el facilitador de la creación de aplicaciones a ser la cabeza de los desarrolladores”.

He visto la transformación en mí mismo”, añade Jhingran. “He pasado de ser un desarrollador común y corriente de datos, que se centró en la solución de problemas difíciles. Ver el éxito que he obtenido es la razón que me motiva a que otras personas también lo obtengan”.

No me llame un ‘Científico de datos’
Jhingran dice que su malestar se centra “cuando se crea un aura que caracteriza como inabordables a los científicos de datos. También, en mi mente, se da una salida fácil para los desarrolladores, y es decir que los datos son muy volubles y trabajar con ellos es difícil”.

Este sentimiento es parte de un cambio importante que según Jhingran está sucediendo en el campo de la ciencia de datos hoy en día, como la capacidad de utilizar datos grandes que se vuelve más dominante en la empresa y una ventaja competitiva clave para las organizaciones capaces de hacer uso de análisis de operaciones y análisis de inteligencia de negocios.

Ese cambio es que los científicos de datos son magos que ya no operan detrás de una cortina; que están empezando a trabajar mano a mano con los desarrolladores para ofrecer un valor empresarial a los usuarios finales.

Todas las empresas de éxito ven que el análisis de apalancamiento está en una línea superior masiva, que además mejora los resultados, y los que no lo ven o no lo entienden es porque ellos han hecho estas cosas la corriente principal”, dice.

Realmente tiene que ser en ese nivel de importancia lo que hace que esto tenga éxito. Obviamente la tecnología es importante y el científico de datos tiene que evolucionar con ésta. Si estamos de acuerdo con el hecho de que grandes datos se van a la corriente principal, en mi mente hay una entidad que se sienta entre la obra del científico de datos y el usuario final, y es el desarrollador”.

Pensar como un desarrollador
Los desarrolladores son los nuevos hacedores de reyes”, añade. “Están en el puesto de más valor del negocio, mediante la creación de aplicaciones. El científico de datos tiene que tener un nuevo modo de pensar, y no se trata sólo de resolver los grandes problemas de manera aislada ya. La mentalidad tiene que ser: ¿Cómo habilito a estos desarrolladores?”.

Por su parte, Jhingran dice que está trabajando para impulsar esa forma de pensar en Apigee. Los científicos de datos ya no están en equipos o en grupos aparte de los demás. En cambio, ahora se sientan con los desarrolladores en las líneas de negocio.

Hicimos que estos científicos de datos en realidad se sienten en los equipos de trabajo con los desarrolladores”, dice. “Viven y respiran sus problemas. Eso ha hecho una gran diferencia en la comprensión de los científicos de datos, que su trabajo es permitir a la gente tener éxito”.

El resultado es que el análisis científico de los datos ahora está habilitando productos que facilitan el acceso a los APIs, que los desarrolladores pueden aprovechar para hacer funcionar sus aplicaciones.

Todo sucede, porque los científicos de datos no sólo han hecho el trabajo duro en los problemas difíciles, sino que avanzan a la siguiente milla para que los desarrolladores continúen su trabajo”, dice.

Sin embargo, señala que los desarrolladores, como los científicos de datos, tienen que cambiar su mentalidad cultural, más si van a ofrecer el mejor valor a los usuarios finales.

“Los desarrolladores han pensado típicamente en sí mismos al desarrollar la programación, ya sea la interfaz de usuario o la aplicación o la lógica del negocio”, dice Jhingran. “Siempre que se habla de datos, se habla de éstos como algo persistente, en comparación con la analítica. Creemos firmemente que el desarrollador del futuro no será un revelador de la habilidad individual, más bien será capaz de jugar con las necesidades de datos para convertirse en un habilitador muy importante”.

El desarrollador del futuro” –dice- “tendrá que ser multifacético, capaz de construir una aplicación en la mañana, y luego construir una API en apoyo de esa aplicación. Más tarde ese día, ese mismo desarrollador debe ser capaz de probar la aplicación para determinar si se está creando un beneficio”.

En cinco años, los desarrolladores tienen que ser lo más cómodo jugando con los datos como están con la lógica del negocio y la lógica de la interfaz de usuario”, añade.



ORIGINAL: PulsoSocial
por Pulsosocial+
agosto 25, 2014

Smart Phones for Smart Kids



Smart Phones for Smart Kids



This article first appeared on the Wall Street Journal Aug. 21, 2014 7:37 p.m. ET

This year more than 750 million educational apps for mobile devices will be installed world-wide.”

In the coming weeks, 55 million U.S. students in grades K-12 will go back to school. In their backpacks they will carry pens, No. 2 pencils, 3-ring binders and calculators. But most students will also carry something that their parents’ generation could never have imagined: a smartphone.

And that changes everything. The mobile technologies that have revolutionized the American workplace are now transforming our education system.

For years entrepreneurs and educators have been pushing to bring education technology into the classroom, but adoption has often been slow. Now the education tech landscape is shifting toward mobile devices and new, free and easy-to-use services. The impact is enormous: This year more than 750 million educational apps for mobile devices will be installed world-wide.

Teachers can choose from an array of educational content to create learning experiences that are more accessible, personalized and engaging. If emails to students or phone calls home go ignored, teachers can meet families where they live—on their mobile devices. A remarkable 70% of teenagers age 13-17 have smartphones, according to a 2013 report by the market-research firm Nielsen.

And teenagers are not casual users: The average teenager sends 60 text messages a day, with many sending more than 100 a day, according to a 2012 study by the Pew Research Center. For students, parents and teachers, mobile devices are central to everyday life.

The nonprofit online Khan Academy is one of the strongest examples of how new technology can create more personalized and engaging education. Its free, interactive video lessons allow K-12 students to learn at their own pace, with an individual dashboard for recommended lessons. Khan Academy began with the founder Sal Khan helping his niece with her math homework. There are now 10 million monthly users with nearly 500 million total views on the Khan Academy YouTube channel.

Another gem is the free mobile language-learning app Duolingo. It offers custom exercises based on a student’s progress. Each month, nine million users complete 150 million lessons across six languages. Yet another leader in personalized content is Quizlet, an online library that provides 22 million monthly users with flashcards, tests and games. Quizlet’s library of 50 million study sets covers every subject from Mandarin to Advanced Placement art history.

In addition to these innovations in curriculum, new smartphone apps enable simple, intuitive and powerful communications. A 2012 report from Harvard University’s Matthew Kraft and Shaun Dougherty found that teacher-family communication made it 40% more likely that students would complete their homework. When teachers, students and parents communicate, learning improves.

A leader in the field is Remind, a free service that allows teachers to safely and securely text students and parents without disclosing personal phone numbers. Remind turns text messaging into a broadcast channel for each class, saving teachers time while informing students and families. One out of every five teachers in the U.S. is already using Remind, judging from the number of Remind teacher accounts and Labor Department teacher data. In Texas, more than 40% of teachers use the service.

Other applications, such as Edmodo, allow collaboration on assignments and curriculum. Edmodo is a social learning platform similar to Facebook, with millions of users.

For a long time we have known that strong teachers, motivated students and engaged parents are building blocks for a successful education. Now we know more: Free, powerful mobile apps are improving that learning.

Mr. Doerr is a co-founder of the New Schools Venture Fund and a funder of education technology entrepreneurs at AltSchool, Chegg, Coursera, DreamBox, Duolingo, Khan Academy and Remind. He is a partner at Kleiner Perkins Caufield & Byers.

Read More on WSJ.com



ORIGINAL: KPCB
August 22, 2014
By John Doerr

I Contain Multitudes

Our bodies are a genetic patchwork, possessing variation from cell to cell. Is that a good thing?

Olena Shmahalo for Quanta Magazine

Even healthy brains harbor genetic diversity, though scientists disagree over the extent.

Your DNA is supposed to be your blueprint, your unique master code, identical in every one of your tens of trillions of cells. It is why you are you, indivisible and whole, consistent from tip to toe.

But that’s really just a biological fairy tale. In reality, you are an assemblage of genetically distinctive cells, some of which have radically different operating instructions. This fact has only become clear in the last decade. Even though each of your cells supposedly contains a replica of the DNA in the fertilized egg that began your life, mutations, copying errors and editing mistakes began modifying that code as soon as your zygote self began to divide. In your adult body, your DNA is peppered by pinpoint mutations, riddled with repeated or rearranged or missing information, even lacking huge chromosome-sized chunks. Your data is hopelessly corrupt.

Most genome scientists assume that this DNA diversity, called “somatic mutation” or “structural variation,” is bad. Mutations and other genetic changes can alter the function of the cell, usually for the worse. Disorderly DNA is a hallmark of cancers, and genomic variation can cause a suite of brain disorders and malformations. It makes sense: Cells working off garbled information probably don’t function very well.

Most research to date has focused on how aberrant DNA drives disease, but even healthy bodies harbor genetic disorder. In the last few years, some researchers report that anywhere from 10 to 40 percent of brain cells and between 30 and 90 percent of human liver cells are aneuploid, meaning that one entire chromosome is either missing or duplicated. Copy number variations, in which chunks of DNA between 100 and a few million letters in length are multiplied or eliminated, also seem to be widespread in healthy people.

Scientists Create Solid Light


photo credit: Princeton University, Engineering School. 
By creating a "self-trapping regime" scientists have made light behave like a crystal

On a late summer afternoon it can seem like sunlight has turned to honey, but could liquid—or even solid—light be more than a piece of poetry? Princeton University electrical engineers say not only is it possible, they’ve already made it happen.

In Physical Review X, the researchers reveal that they have locked individual photons together so that they become like a solid object.

"It's something that we have never seen before," says Dr. Andrew Houck, an associate professor of electrical engineering and one of the researchers. "This is a new behavior for light."

The researchers constructed what they call an “artificial atom” made of 100 billion atoms engineered to act like a single unit. They then brought this close to a superconducting wire carrying photons. In one of the almost incomprehensible behaviors unique to the quantum world, the atom and the photons became entangled so that properties passed between the “atom” and the photons in the wire. The photons started to behave like atoms, correlating with each other to produce a single oscillating system.

As some of the photons leaked into the surrounding environment, the oscillations slowed and at a critical point started producing quantum divergent behavior. In other words, like Schroedinger's Cat, the correlated photons could be in two states at once.

"Here we set up a situation where light effectively behaves like a particle in the sense that two photons can interact very strongly," said co-author Dr. Darius Sadri. "In one mode of operation, light sloshes back and forth like a liquid; in the other, it freezes."

As cool as it is to produce solidified light, the team was not acting out of curiosity alone. When connected together the photons of light behave like subatomic particles, but are in some ways easier to study. Consequently, the team is hoping to use the solid light to simulate subatomic behavior.

Attempts to model the behavior of large numbers of particles usually use statistical mechanics, and often simplify by assuming no interaction between particles and a system at equilibrium. However, in a point we can all relate to, Houck and his colleagues note, “The world around us is rarely in equilibrium.” The solidified light offers a chance to observe a subatomic system as it starts to diverge from equilibrium, with potential for a basic understanding of how these systems operate.

The system created so far is very simple, with the light entangled with the atom at two points. However, it should be possible to increase this, greatly expanding the complexity and range of possibilities of what is being constructed.

As well as providing an easy-to-study model of atomic systems that actually exist, Houck and his team hope the frozen light could be made to behave like materials that do not exist, but have been hypothesised by physicists, allowing them to explore how these things would react if they were real.

ORIGINAL: IFLScience
by Stephen Luntz
September 11, 2014

domingo, 7 de septiembre de 2014

Scientists Create Simple Artificial ‘Cell’ Capable Of Spontaneous Movement

photo credit: Vesicle shapes created through osmosis. Image credit: Christoph Hohmann, Nano Initiative Munich
The cells that make up all living things are in constant interaction with their environment. Most cells perform complex chemical processes to ensure the cell and the organism remain healthy. Scientists have not yet been able to replicate a fully-functional synthetic cell, but it now appears they are off to a good start. A team of biophysicists have developed basic artificial vesicles capable of changing shape and moving spontaneously. 

The vesicles created in this study will be used in future design of increasingly-complex artificial cellular structures, capable of interacting with the environment and carrying out the same processes as a natural biological cell. The research was led by Andreas Bausch from Technische Universität München, and the paper appeared on the cover of Science.

Bausch’s team went back to the basics of cell biology and used biomolecules to build the most fundamental cellular structures from the protein level up. A rudimentary cytoskeleton was constructed by adding tiny tube-shaped polymers called microtubules inside the lipid bilayer membrane that served as the vesicle’s casing. Proteins called kinesins were also added to push along the microtubules, providing movement. Kinesins require coenzyme adenosine triphosphate (ATP) to function, which was added as a source of fuel.

Within the vesicle, the microtubules formed a constantly moving flat layer of liquid crystal. Liquid crystal is a state of matter that is neither liquid nor solid, yet has properties similar to both states. 

"One can picture the liquid crystal layer as tree logs drifting on the surface of a lake," lead author Felix Keber said in a press release. "When it becomes too congested, they line up in parallel but can still drift alongside each other.

As the 2D arrangement of the microtubule liquid crystals are trying to completely line a 3D spheroid, it cannot be done flawlessly. Think of it like trying to gift wrap a basketball. The paper can pressed mostly flat, but eventually there will be unavoidable creases and faults. The faults within the microtubules caused some to be packed in a different orientation to fit in. 

The microtubule faults had not impacted the shape or integrity of the vesicle under normal circumstances, but that changed when the vesicles were subjected to different environmental conditions. As water was extracted from the vesicle due to osmosis, the bilayer membrane deflated. Movement from the microtubules in the faults caused the sagging membrane to adopt new shapes, including some with spike-like protrusions.

"With our synthetic biomolecular model we have created a novel option for developing minimal cell models," Bausch states. "It is ideally suited to increasing the complexity in a modular fashion in order to reconstruct cellular processes like cell migration or cell division in a controlled manner. That the artificially created system can be comprehensively described from a physical perspective gives us hope that in the next steps we will also be able to uncover the basic principles behind the manifold cell deformations."


ORIGINAL: IFLScience
by Lisa Winter
September 5, 2014

Neurons in human skin perform advanced calculations

[2014-09-01] Neurons in human skin perform advanced calculations, previously believed that only the brain could perform. This is according to a study from Umeå University in Sweden published in the journal Nature Neuroscience.


A fundamental characteristic of neurons that extend into the skin and record touch, so-called first-order neurons in the tactile system, is that they branch in the skin so that each neuron reports touch from many highly-sensitive zones on the skin.

According to researchers at the Department of Integrative Medical Biology, IMB, Umeå University, this branching allows first-order tactile neurons not only to send signals to the brain that something has touched the skin, but also process geometric data about the object touching the skin.

- Our work has shown that two types of first-order tactile neurons that supply the sensitive skin at our fingertips not only signal information about when and how intensely an object is touched, but also information about the touched object's shape, says Andrew Pruszynski, who is one of the researchers behind the study.

The study also shows that the sensitivity of individual neurons to the shape of an object depends on the layout of the neuron’s highly-sensitive zones in the skin.

- Perhaps the most surprising result of our study is that these peripheral neurons, which are engaged when a fingertip examines an object, perform the same type of calculations done by neurons in the cerebral cortex. Somewhat simplified, it means that our touch experiences are already processed by neurons in the skin before they reach the brain for further processing, says Andrew Pruszynski.

For more information about the study, please contact Andrew Pruszynski, post doc at the Department of Integrative Medical Biology, IMB, Umeå University. He is English-speaking and can be reached at: 
Phone: +46 90 786 51 09; Mobile: +46 70 610 80 96


ORIGINAL: Umeå University